On the Signed Complete Graphs with Maximum Index

نویسندگان

چکیده

Let $$\Gamma =(K_{n},H^-)$$ be a signed complete graph whose negative edges induce subgraph H. The index of $$\Gamma$$ is the largest eigenvalue its adjacency matrix. In this paper, we study when H unicyclic graph. We show that among all graphs order $$n>5$$ k and maximizes index, triangle with remaining vertices being pendant at same vertex triangle.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Frustration in Bipartite Signed Graphs

A signed graph is a graph where each edge is labeled as either positive or negative. A circle is positive if the product of edge labels is positive. The frustration index is the least number of edges that need to be removed so that every remaining circle is positive. The maximum frustration of a graph is the maximum frustration index over all possible sign labellings. We prove two results about...

متن کامل

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

On net-Laplacian Energy of Signed Graphs

A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...

متن کامل

Signed total domination on Kronecker products of two complete graphs

Given two graphs G1 and G2, the Kronecker product G1 ⊗G2 of G1 and G2 is a graph which has vertex set V (G1⊗G2) = V (G1)×V (G2) and edge set E(G1 ⊗ G2) = {(u1, v1)(u2, v2) : u1u2 ∈ E(G1) and v1v2 ∈ E(G2)}. ∗ Research was partially supported by the National Nature Science Foundation of China (No. 11171207) and the Key Programs of Wuxi City College of Vocational Technology (WXCY2012-GZ-007). † Co...

متن کامل

Signed graphs with small positive index of inertia

In this paper, the signed graphs with one positive eigenvalue are characterized, and the signed graphs with pendant vertices having exactly two positive eigenvalues are determined. As a consequence, the signed trees, the signed unicyclic graphs and the signed bicyclic graphs having one or two positive eigenvalues are characterized.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Iranian Journal of Science and Technology Transaction A-science

سال: 2021

ISSN: ['1028-6276']

DOI: https://doi.org/10.1007/s40995-021-01199-w